

Reception Long Term Plan:

	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Wk 10	Wk 11	Wk 12
Aut	Ge	Getting to Know You Positional language			Just Like I Numbe asure, Sha patial Thir	er ape and	It's Me 1, 2, 3! Number -> 1AS-1 Measure, Shape and Spatial Thinking -> 1G-1		Light and Dark Number Measure, Shape and Spatial Thinking-> 1G-1		er and Spatial	
Spr		Alive in Number -> i Ire, Shape a Thinkin	1AS-1 and Spatial	Me	Growing 6 Numbe asure, Sha patial Thir	er ape and	Nı Measur	nilding 9 nmber -> re, Shape ninking -	1NF-1 and Spatial		Consolida	tion
Sum	T Numb	o 20 and Ber -> 1NPV	-1, 1NPV-2,	N	irst, Then, umber -> : al Reasonin		Nu	ind My P umber -> l Reason		Spatia	On the M Numbe al Reasoni	

In line with government guidance, the Ready-to-Progress criteria for Years 1-6 has been mapped to the long term plan. The Ready-to-Progress criteria sets out the key areas that children must be secure with in order to progress with their learning the following year. As there is not a Ready-to-Progress criteria for Reception, key areas of learning have been noted on the long term plan. Areas that directly link to Year 1 criteria have been highlighted.

There are 6 strands within this criteria: Number and Place Value, Number Facts, Addition and Subtraction, Multiplication and Division, Fractions and Geometry.

Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
NPV	1NPV-1 Count within		3NPV-1 Know that	4NPV-1 Know that	5NPV-1 Know that	6NPV-1 Understand
	100, forwards and		10 tens are	10 hundreds are	10 tenths are	the relationship
	backwards, starting		equivalent to 1	equivalent to 1	equivalent to 1 one,	between powers of
	with any number.		hundred, and that	thousand, and that	and that 1 is 10 times	10 from 1 hundredth
			100 is 10 times the	1,000 is 10 times the	the size of 0.1. Know	to 10 million, and use
			size of 10; apply this	size of 100; apply this	that 100 hundredths	this to make a given
			to identify and work	to identify and work	are equivalent to 1	number 10, 100,
			out how many 10s	out how many 100s	one, and that 1 is 100	1,000, 1 tenth, 1
			there are in other	there are in other	times the size of	hundredth or 1
			threedigit multiples	four-digit multiples of	0.01. Know that 10	thousandth times the
			of 10	100.	hundredths are	size (multiply and
					equivalent to 1 tenth,	divide by 10, 100 and
					and that 0.1 is 10	1,000).
					times the size of	
					0.01.	
		2NPV-1 Recognise	3NPV-2 Recognise	4NPV-2 Recognise	5NPV-2 Recognise	6NPV-2 Recognise
		the place value of	the place value of	the place value of	the place value of	the place value of
		each digit in two-	each digit in three-	each digit in four-	each digit in	each digit in
		digit numbers, and	digit numbers, and	digit numbers, and	numbers with up to	numbers up to 10
		compose and	compose and	compose and	2 decimal places,	million, including
		decompose two-	decompose three-	decompose four-	and compose and	decimal fractions,

	NPV-2 Reason	digit numbers using standard and nonstandard partitioning.	digit numbers using standard and non-standard partitioning. 3NPV-3 Reason	digit numbers using standard and nonstandard partitioning.	decompose numbers with up to 2 decimal places using standard and nonstandard partitioning. 5NPV-3 Reason	and compose and decompose numbers up to 10 million using standard and nonstandard partitioning.
nui wit nui inc	nout the location of ambers to 20 aithin the linear amber system, cluding comparing sing < > and =	about the location of any twodigit number in the linear number system, including identifying the previous and next multiple of 10.	about the location of any threedigit number in the linear number system, including identifying the previous and next multiple of 100 and 10.	about the location of any fourdigit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100, and rounding to the nearest of each.	about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.	about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.
			3NPV-4 Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with 2, 4, 5 and 10 equal parts.	4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with 2, 4, 5 and 10 equal parts.	5NPV-4 Divide 1 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in units of 1 with 2, 4, 5 and 10 equal parts.	6NPV-4 Divide powers of 10, from 1 hundredth to 10 million, into 2, 4, 5 and 10 equal parts, and read scales/number lines with labelled intervals divided into 2, 4, 5 and 10 equal parts.
					5NPV-5 Convert between units of measure, including using common decimals and fractions.	

NF	1NF-1 Develop fluency in addition and subtraction facts within 10. 1NF-2 Count forwards and backwards in multiples of 2, 5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd	2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice.	3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice. 3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables	4NF-1 Recall multiplication and division facts up to, and recognise products in multiplication tables as multiples of the corresponding number.	5NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice.	
	numbers.		as multiplies of the corresponding number.			
				4NF-2 Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders, and interpret remainders appropriately according to the context.		
			3NF-3 Apply place- value knowledge to known additive and multiplicative	4NF-3 Apply place- value knowledge to known additive and multiplicative number facts	5NF-2 Apply place- value knowledge to known additive and multiplicative number facts	

			number facts (scaling facts by 10).	(scaling facts by 100)	(scaling facts by 1 tenth or 1 hundredth).	
AS	1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	2AS-1 Add and subtract across 10.	3AS-1 Calculate complements to 100.			6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).
	1AS-2 Read, write and interpret equations containing addition (+), subtraction (-) and equals (=) symbols, and relate additive expressions and equations to real-life contexts.	2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more?".	3AS-2 Add and subtract up to three-digit numbers using columnar methods.			6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.
		2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones	3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to			6AS/MD-3 Solve problems involving ratio relationships.

	or only tens to/from	the part-part-whole			
	a two-digit number.	structure.			
		Understand and use			
		the commutative			
		property of addition,			
		and understand the			
		related property for			
		subtraction.			
	2AS-4 Add and				6AS/MD-4 Solve
	subtract within 100				problems with 2
	by applying related				unknowns.
	one-digit addition				
	and subtraction				
	facts: add and				
	subtract any 2 two-				
	digit numbers.				
MD	2MD-1 Recognise	3MD-1 Apply	4MD-1 Multiply and	5MD-1 Multiply and	For year 6, MD
IVID	repeated addition	known	divide whole	divide numbers by	ready-to-progress
	contexts.	multiplication and	numbers by 10 and	10 and 100;	criteria are
	representing them	division facts to	100 (keeping to	understand this as	combined with AS
	with multiplication	solve contextual	whole number	equivalent to	ready-to-progress
	equations and	problems with	quotients);	making a number 10	criteria (please see
	calculating the	different structures,	understand this as	or 100 times the	above).
	product, within the	including quotitive	equivalent to	size, or 1 tenth or 1	
	2, 5 and 10	and partitive	making a number 10	hundredth times the	
	multiplication	division.	or 100 times the	size.	
	tables.		size.		
	2MD-2 Relate		4MD-2 Manipulate	5MD-2 Find factors	
	grouping problems		multiplication and	and multiples of	
	where the number		division equations,	positive whole	
	of groups is		and understand and	numbers, including	
	unknown to		apply the	common factors and	
	multiplication		commutative	common multiples,	
	equations with a		property of	and express a given	
	missing factor, and		multiplication.	and express a given	
	missing factor, and		munipiication.	1	i l

	. 1		T	1 1 1 .	
	to division			number as a product	
	equations (quotitive			of 2 or 3 factors.	
	division).				
			4MD-3 Understand	5MD-3 Multiply any	
			and apply the	whole number with	
			distributive	up to 4 digits by any	
			property of	one-digit number	
			multiplication.	using a formal	
			1	written method.	
				5MD-4 Divide a	
				number with up to 4	
				digits by a one-digit	
				number using a	
				formal written	
				method, and	
				interpret	
				remainders	
				appropriately for	
				the context.	
_		3F-1 Interpret and		the context	6F-1 Recognise
F		write proper			when fractions can
		fractions to			be simplified, and
		represent 1 or			use common factors
		several parts of a			to simplify fractions.
		whole that is			to simplify fractions.
		divided into equal			
		parts. 3F-2 Find unit		5F–1 Find non-unit	CE 2 Everyone
					6F-2 Express
		fractions of		fractions of	fractions in a
		quantities using		quantities.	common
		known division facts			denomination and
		(multiplication			use this to compare
		tables fluency).			fractions that are
					similar in value.

			3F-3 Reason about the location of any fraction within 1 in the linear number system.	4F–1 Reason about the location of mixed numbers in the linear number system.		6F-3 Compare fractions with different denominators, including fractions greater than 1, using reasoning, and choose between reasoning and common denomination as a comparison strategy.
				4F–2 Convert mixed numbers to improper fractions and vice versa.	5F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system.	
			3F-4 Add and subtract fractions with the same denominator, within 1.	4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers	5F-3 Recall decimal fraction equivalents for $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$ and $\frac{1}{10}$ and for multiples of these proper fractions.	
G	1G–1 Recognise common 2D and 3D shapes presented in different orientations, and	2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by	3G-1 Recognise right angles as a property of shape or a description of a turn, and identify		5G-1 Compare angles, estimate and measure angles in degrees (°) and	

know that	reasoning about	right angles in 2D		draw angles of a	
rectangles, triangles,	similarities and	shapes presented in		given size.	
cuboids and	differences in	different			
pyramids are not	properties.	orientations.			
always similar to	P				
one another.					
one unother.				5G-2 Compare areas	
				and calculate the	
				area of rectangles	
				C	
				(including squares)	
				using standard	
				units.	
1G-2 Compose 2D		3G-2 Draw polygons	4G-1 Draw		6G–1 Draw,
and 3D shapes from		by joining marked	polygons, specified		compose, and
smaller shapes to		points, and identify	by coordinates in		decompose shapes
match an example,		parallel and	the first quadrant,		according to given
including		perpendicular sides.	and translate within		properties,
manipulating shapes			the first quadrant.		including
to place them in			_		dimensions, angles
particular					and area, and solve
orientations.					related problems.
			4G-2 Identify		F
			regular polygons,		
			including equilateral		
			triangles and		
			squares, as those in		
			which the side-		
			lengths are equal		
			_		
			and the angles are		
			equal. Find the		
			perimeter of regular		
			and irregular		
			polygons.		
			4G-3 Identify line		
			symmetry in 2D		

	shapes presented in different
	orientations. Reflect
	shapes in a line of
	symmetry and
	complete a
	symmetric figure or
	pattern with respect
	to a specified line of
	symmetry.

Maths Programme of Study National Curriculum (2013)

Purpose of study	Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution
	to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering,
	and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a
	foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of
	mathematics, and a sense of enjoyment and curiosity about the subject.

Aims

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects. The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

Subject content – by the end of Key Stage 1 pupils should be taught to: The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools]. At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money. By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency. Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1.

Subject content – by the end of Lower Key Stage 2 pupils should be taught to: The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers. At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number. By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work. Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

Subject content – by the end of Upper Key Stage 2 pupils should be taught to: The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio. At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages. Pupils should read, spell and pronounce mathematical vocabulary correctly.