Maths Long Term Plan and Progression of Skills and Knowledge

Reception Long Term Plan:

Maths Long Term Plan and Progression of Skills and Knowledge

In line with government guidance, the Ready-to-Progress criteria for Years 1-6 has been mapped to the long term plan. The Ready-to-Progress criteria sets out the key areas that children must be secure with in order to progress with their learning the following year. As there is not a Ready-to-Progress criteria for Reception, key areas of learning have been noted on the long term plan. Areas that directly link to Year 1 criteria have been highlighted.

There are 6 strands within this criteria: Number and Place Value, Number Facts, Addition and Subtraction, Multiplication and Division, Fractions and Geometry.

| Strand | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Maths Long Term Plan and Progression of Skills and Knowledge

		digit numbers using standard and nonstandard partitioning.	digit numbers using standard and nonstandard partitioning.	digit numbers using standard and nonstandard partitioning.	decompose numbers with up to 2 decimal places using standard and nonstandard partitioning.	and compose and decompose numbers up to 10 million using standard and nonstandard partitioning.
	1NPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using $<>$ and $=$	2NPV-2 Reason about the location of any twodigit number in the linear number system, including identifying the previous and next multiple of 10 .	3NPV-3 Reason about the location of any threedigit number in the linear number system, including identifying the previous and next multiple of 100 and 10.	4NPV-3 Reason about the location of any fourdigit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.	5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.	6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.
			3NPV-4 Divide 100 into $2,4,5$ and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts.	4NPV-4 Divide 1,000 into $2,4,5$ and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts.	5NPV-4 Divide 1 into $2,4,5$ and 10 equal parts, and read scales/number lines marked in units of 1 with $2,4,5$ and 10 equal parts.	6NPV-4 Divide powers of 10, from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts.
					5NPV-5 Convert between units of measure, including using common decimals and fractions.	

Maths Long Term Plan and Progression of Skills and Knowledge

NF	1NF-1 Develop fluency in addition and subtraction facts within 10.	2NF-1 Secure fluency in addition and subtraction facts within 10 , through continued practice.	3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice.			
	1NF-2 Count forwards and backwards in multiples of 2, 5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.		3NF-2 Recall multiplication facts, and corresponding division facts, in the $10,5,2,4$ and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.	4NF-1 Recall multiplication and division facts up to , and recognise products in multiplication tables as multiples of the corresponding number.	5NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice.	
				4NF-2 Solve division problems, with two-digit dividends and onedigit divisors, that involve remainders, and interpret remainders appropriately according to the context.		
			3NF-3 Apply placevalue knowledge to known additive and multiplicative	4NF-3 Apply placevalue knowledge to known additive and multiplicative number facts	5NF-2 Apply placevalue knowledge to known additive and multiplicative number facts	

Maths Long Term Plan and Progression of Skills and Knowledge

			number facts (scaling facts by 10).	(scaling facts by 100)	(scaling facts by 1 tenth or 1 hundredth).	
AS	1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	2AS-1 Add and subtract across 10.	3AS-1 Calculate complements to 100.			6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).
	1AS-2 Read, write and interpret equations containing addition (+), subtraction (-) and equals ($=$) symbols, and relate additive expressions and equations to real-life contexts.	2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?".	3AS-2 Add and subtract up to threedigit numbers using columnar methods.			6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.
		2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones	3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to			6AS/MD-3 Solve problems involving ratio relationships.

Maths Long Term Plan and Progression of Skills and Knowledge

		or only tens to/from a two-digit number.	the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.			
		2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 twodigit numbers.				6AS/MD-4 Solve problems with 2 unknowns.
MD		2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2, 5 and 10 multiplication tables.	3MD-1 Apply known multiplication and division facts to solve contextual problems with different structures, including quotitive and partitive division.	4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	5MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size.	For year 6, MD ready-to-progress criteria are combined with AS ready-to-progress criteria (please see above).
		2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and		4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.	5MD-2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given	

Maths Long Term Plan and Progression of Skills and Knowledge

Maths Long Term Plan and Progression of Skills and Knowledge

			3F-3 Reason about the location of any fraction within 1 in the linear number system.	4F-1 Reason about the location of mixed numbers in the linear number system.		6F-3 Compare fractions with different denominators, including fractions greater than 1, using reasoning, and choose between reasoning and common denomination as a comparison strategy.
				4F-2 Convert mixed numbers to improper fractions and vice versa.	5F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system.	
			3F-4 Add and subtract fractions with the same denominator, within 1.	4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers	5F-3 Recall decimal fraction equivalents for $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{10}$ and for multiples of these proper fractions.	
G	1G-1 Recognise common 2D and 3D shapes presented in different orientations, and	2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by	3G-1 Recognise right angles as a property of shape or a description of a turn, and identify		5G-1 Compare angles, estimate and measure angles in degrees (${ }^{\circ}$) and	

Maths Long Term Plan and Progression of Skills and Knowledge

	know that rectangles, triangles, cuboids and pyramids are not always similar to one another.	reasoning about similarities and differences in properties.	right angles in 2D shapes presented in different orientations.		draw angles of a given size.	
					5G-2 Compare areas and calculate the area of rectangles (including squares) using standard units.	
	1G-2 Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations.		3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides.	4G-1 Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant.		6G-1 Draw, compose, and decompose shapes according to given properties, including dimensions, angles and area, and solve related problems.
				4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the sidelengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.		
				4G-3 Identify line symmetry in 2D		

Maths Long Term Plan and Progression of Skills and Knowledge

				shapes presented in different orientations. Reflect shapes in aline of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry.	

Maths Programme of Study
 National Curriculum (2013)

> | Purpose of study | $\begin{array}{l}\text { Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution } \\ \text { to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, } \\ \text { and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a } \\ \text { foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of } \\ \text { mathematics, and a sense of enjoyment and curiosity about the subject. }\end{array}$ |
| :--- | :--- |

Maths Long Term Plan and Progression of Skills and Knowledge

Aims
Subject content - by the end of Key Stage 1 pupils should be taught to:

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects. The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools]. At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money. By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency. Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1.

Maths Long Term Plan and Progression of Skills and Knowledge

Subject content - by the end of Lower Key Stage 2 pupils should be taught to:	The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers. At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number. By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work. Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.
Subject content - by the end of Upper Key Stage 2 pupils should be taught to:	The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio. At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages. Pupils should read, spell and pronounce mathematical vocabulary correctly.

